Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Adv ; 9(44): eadh3642, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37922361

RESUMEN

Unintegrated retroviral DNA is transcriptionally silenced by host chromatin silencing factors. Here, we used the proteomics of isolated chromatin segments method to reveal viral and host factors associated with unintegrated HIV-1DNA involved in its silencing. By gene silencing using siRNAs, 46 factors were identified as potential repressors of unintegrated HIV-1DNA. Knockdown and knockout experiments revealed POLE3 as a transcriptional repressor of unintegrated HIV-1DNA. POLE3 maintains unintegrated HIV-1DNA in a repressive chromatin state, preventing RNAPII recruitment to the viral promoter. POLE3 and the recently identified host factors mediating unintegrated HIV-1 DNA silencing, CAF1 and SMC5/SMC6/SLF2, show specificity toward different forms of unintegrated HIV-1DNA. Loss of POLE3 impaired HIV-1 replication, suggesting that repression of unintegrated HIV-1DNA is important for optimal viral replication. POLE3 depletion reduces the integration efficiency of HIV-1. POLE3, by maintaining a repressive chromatin structure of unintegrated HIV-1DNA, ensures HIV-1 escape from innate immune sensing in primary CD4+ T cells.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , VIH-1/genética , ADN Viral/genética , Cromatina/genética , Integración Viral , Infecciones por VIH/genética , Inmunidad Innata
2.
PLoS One ; 17(10): e0272097, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36194565

RESUMEN

While lactate shuttle theory states that glial cells metabolize glucose into lactate to shuttle it to neurons, how glial cells support axonal metabolism and function remains unclear. Lactate production is a common occurrence following anaerobic glycolysis in muscles. However, several other cell types, including some stem cells, activated macrophages and tumor cells, can produce lactate in presence of oxygen and cellular respiration, using Pyruvate Kinase 2 (PKM2) to divert pyruvate to lactate dehydrogenase. We show here that PKM2 is also upregulated in myelinating Schwann cells (mSC) of mature mouse sciatic nerve versus postnatal immature nerve. Deletion of this isoform in PLP-expressing cells in mice leads to a deficit of lactate in mSC and in peripheral nerves. While the structure of myelin sheath was preserved, mutant mice developed a peripheral neuropathy. Peripheral nerve axons of mutant mice failed to maintain lactate homeostasis upon activity, resulting in an impaired production of mitochondrial ATP. Action potential propagation was not altered but axonal mitochondria transport was slowed down, muscle axon terminals retracted and motor neurons displayed cellular stress. Additional reduction of lactate availability through dichloroacetate treatment, which diverts pyruvate to mitochondrial oxidative phosphorylation, further aggravated motor dysfunction in mutant mice. Thus, lactate production through PKM2 enzyme and aerobic glycolysis is essential in mSC for the long-term maintenance of peripheral nerve axon physiology and function.


Asunto(s)
Axones , Piruvato Quinasa , Adenosina Trifosfato/metabolismo , Animales , Axones/metabolismo , Glucosa/metabolismo , Glucólisis , Lactato Deshidrogenasas , Lactatos/metabolismo , Ratones , Vaina de Mielina/metabolismo , Oxígeno/metabolismo , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , Piruvatos/metabolismo , Células de Schwann/metabolismo , Nervio Ciático/patología
3.
J Med Chem ; 65(17): 11633-11647, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35984330

RESUMEN

The voltage-dependent anion channel (VDAC), the most abundant protein on the outer mitochondrial membrane, is implicated in ATP, ion and metabolite exchange with cell compartments. In particular, the VDAC participates in cytoplasmic and mitochondrial Ca2+ homeostasis. Notably, the Ca2+ efflux out of Schwann cell mitochondria is involved in peripheral nerve demyelination that underlies most peripheral neuropathies. Hexokinase (HK) isoforms I and II, the main ligands of the VDAC, possess a hydrophobic N-terminal structured in α-helix (NHKI) that is necessary for the binding to the VDAC. To gain further insight into the molecular basis of HK binding to the VDAC, we developed and optimized peptides based on the NHKI sequence. These modifications lead to an increase of the peptide hydrophobicity and helical content that enhanced their ability to prevent peripheral nerve demyelination. Our results provide new insights into the molecular basis of VDAC/HK interaction that could lead to the development of therapeutic compounds for demyelinating peripheral neuropathies.


Asunto(s)
Enfermedades Desmielinizantes , Enfermedades del Sistema Nervioso Periférico , Sitios de Unión , Hexoquinasa , Humanos , Nervios Periféricos/metabolismo , Canales Aniónicos Dependientes del Voltaje/metabolismo
4.
Nat Commun ; 12(1): 2356, 2021 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-33883545

RESUMEN

Charcot-Marie-Tooth disease 1 A (CMT1A) results from a duplication of the PMP22 gene in Schwann cells and a deficit of myelination in peripheral nerves. Patients with CMT1A have reduced nerve conduction velocity, muscle wasting, hand and foot deformations and foot drop walking. Here, we evaluate the safety and efficacy of recombinant adeno-associated viral vector serotype 9 (AAV2/9) expressing GFP and shRNAs targeting Pmp22 mRNA in animal models of Charcot-Marie-Tooth disease 1 A. Intra-nerve delivery of AAV2/9 in the sciatic nerve allowed widespread transgene expression in resident myelinating Schwann cells in mice, rats and non-human primates. A bilateral treatment restore expression levels of PMP22 comparable to wild-type conditions, resulting in increased myelination and prevention of motor and sensory impairments over a twelve-months period in a rat model of CMT1A. We observed limited off-target transduction and immune response using the intra-nerve delivery route. A combination of previously characterized human skin biomarkers is able to discriminate between treated and untreated animals, indicating their potential use as part of outcome measures.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/terapia , Proteínas de la Mielina/antagonistas & inhibidores , Proteínas de la Mielina/genética , Animales , Enfermedad de Charcot-Marie-Tooth/patología , Dependovirus/genética , Modelos Animales de Enfermedad , Femenino , Silenciador del Gen , Terapia Genética/métodos , Vectores Genéticos , Humanos , Macaca fascicularis , Masculino , Ratones , Ratones Endogámicos C57BL , ARN Interferente Pequeño/genética , Ratas , Ratas Mutantes , Células de Schwann/metabolismo , Células de Schwann/patología , Nervio Ciático/metabolismo , Nervio Ciático/patología
5.
J Am Chem Soc ; 134(49): 20189-96, 2012 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-23157343

RESUMEN

Amphiphilic block copolymers are molecules composed of hydrophilic and hydrophobic segments having the capacity to spontaneously self-assemble into a variety of supramolecular structures like micelles and vesicles. Here, we propose an original way to self-assemble amphiphilic block copolymers into a supported bilayer membrane for defined coating of nanoparticles. The heart of the method rests on a change of the amphiphilicity of the copolymer that can be turned off and on by varying the polarity of the solvent. In this condition, the assembly process can take advantage of specific molecular interactions in both organic solvent and water. While the concept potentially could be applied to any type of charged substrates, we focus our interest on the design of a new type of polymer assembly mimicking the virus morphology. A capsid-like shell of glycoprotein-mimic amphiphilic block copolymer was self-assembled around a positively charged complex of siRNA and polyethyleneimine. The process requires two steps. Block copolymers first interact with the complexes dispersed in DMSO through electrostatic interactions. Next, the increase of the water content in the medium triggers the hydrophobic effect and the concomitant self-assembly of free block copolymer molecules into a bilayer membrane at the complex surface. The higher gene silencing activity of the copolymer-modified complexes over the complexes alone shows the potential of this new type of nanoconstructs for biological applications, especially for the delivery of therapeutic biomolecules.


Asunto(s)
Polietileneimina/química , ARN Interferente Pequeño/química , Electrólitos/química , Interacciones Hidrofóbicas e Hidrofílicas , Polietileneimina/síntesis química , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...